PMNS for Large Integers:
 Revisiting the internal Montgomery reduction

Nicolas Méloni, François Palma, Pascal Véron

Université de Toulon, Laboratoire IMATH

Definition

 cryptographic system that relies on modular arithmetic such as RSA, ECC, etc. A PMNS is characterized by a tuple (p, n, γ, ρ, E)

Example

A short example using small numbers for clarity
$>$ We take the PMNS ($11,3,7,2, X^{3}-2$)
$\boldsymbol{\bullet} a=8 \rightarrow A(X)=X^{2}-X-1: A(7) \equiv 7^{2}-7-1 \equiv 41 \equiv 8(\bmod 11)$
$\rightarrow \operatorname{deg}(A)<3$ and $\forall i,\left|a_{i}\right|<2$
$a b(\bmod p) \longrightarrow C(X)=A(X) B(X)$
$\rightarrow b=6 \rightarrow B(X)=X-1, c=a b(\bmod 11) \rightarrow C(X)=A(X) B(X)$
$a+b(\bmod p) \longrightarrow C(X)=A(X)+B(X)$
$>E(\gamma) \equiv E(7) \equiv 7^{3}-2 \equiv 341 \equiv 0(\bmod 11)$

Problems:

$>$ If $\operatorname{deg}(A)=\operatorname{deg}(B)=n-1$, for $C(X)=A(X) B(X)$ we have $\operatorname{deg}(C)=2 n-2>n-1$
$>c_{i}=a_{i} b_{i} \Longrightarrow\left|c_{i}\right|<n \rho^{2}$ and not ρ so some coefficients might be too big.

External Reduction

- We compute $C^{\prime}(X)=A(X) B(X)(\bmod E(X))$
$>E(\gamma) \equiv 0(\bmod p) \Longrightarrow C^{\prime}(\gamma) \equiv A(\gamma) B(\gamma) \equiv a b(\bmod p)$
$>\operatorname{deg}(E)=n \Longrightarrow \operatorname{deg}\left(C^{\prime}\right)<n$
Since E can be as sparse as we want it to be, we can choose $E(X)=X^{n}-\lambda$ with $\lambda \in \mathbb{Z} / p \mathbb{Z}$ for fast calculations.
We therefore have a new bound of $\left|c_{i}^{\prime}\right|<(|\lambda|(n-1)+1) \rho^{2}$
$C^{\prime}(X)=C(X)-E(X)=X^{3}-2 X^{2}+1-\left(X^{3}-2\right)=-2 X^{2}+3$
$>\operatorname{deg}(C)=3>2$
$>c_{2}=-2 \Longrightarrow\left|c_{2}\right|=2$ and we want $\forall i,\left|c_{i}\right|<2$

The Internal Reduction is one of the most important parts of PMNS calculations. In 2008, C. Negre and T. Plantard proposed an algorithm based on the Montgomery modular reduction. [3]

Montgomery Polynomial Reduction

Algorithm 1 Coefficients reduction
Require: $\mathcal{B}=(p, n, \gamma, \rho, E)$ a PMNS, $C^{\prime} \in \mathbb{Z}[X]$ such that $\operatorname{deg}\left(C^{\prime}\right)<n, M \in \mathfrak{L}=$ $\{A(X)$ such that $\operatorname{deg} A(X) \leqslant n-1$ and $A(\gamma)=0 \bmod p\}, \phi \in \mathbb{N} \backslash\{0\}$ and $M^{\prime}=M^{-1} \bmod (E, \phi)$.
Ensure: $C^{\prime \prime}(\gamma)=C^{\prime}(\gamma) \phi^{-1}(\bmod p)$, with $C^{\prime \prime} \in \mathbb{Z}[X]$ such that $\operatorname{deg}\left(C^{\prime \prime}\right)<n$
$Q \leftarrow C^{\prime} \times M^{\prime} \bmod (E, \phi)$
$T \leftarrow Q \times M \bmod E$
$C^{\prime \prime} \leftarrow\left(C^{\prime}-T\right) / \phi$
return $C^{\prime \prime}$

Notes:

$>$ We generally choose $\phi=2^{64}$ for fast division operations on 64-bit hardware
$>$ For $E(X)=X^{n}-\lambda$, we choose ρ such that $\phi>(|\lambda|(n-1)+1) \rho$
\rightarrow As noted earlier, we have $\left|c_{i}^{\prime}\right|<(|\lambda|(n-1)+1) \rho^{2}$ therefore $\left|c_{i}^{\prime \prime}\right|<\frac{(|\lambda|(n-1)+1) \rho^{2}}{\phi} \Longrightarrow\left|c_{i}^{\prime \prime}\right|<\rho$
$>$ We get $c^{\prime \prime}=a b \phi^{-1}(\bmod p)$ and not $a b$ which has to be accounted for

Problem:

- Finding M may involve an exhaustive search (2^{n} iterations [2, Algorithm 8])
$>n_{\text {min }}>\log _{2}\left(\frac{p}{\phi}\right)$ so for 8192-bit integers (ex: RSA) we get $n>128$
\rightarrow More than 2^{128} iterations inn't reasonable

Algorithm 2 Coefficients reduction, new version
Require: $\mathcal{B}=(p, n, \gamma, \rho, E)$ a PMNS, $C^{\prime} \in \mathbb{Z}[X]$ such that $\operatorname{deg}\left(C^{\prime}\right)<n, \mathcal{L}$ a reduced basis of $\mathfrak{L}=$
$\{A(X)$ such that $\operatorname{deg} A(X) \leqslant n-1$ and $A(\gamma)=0 \bmod p\}, \phi \in \mathbb{N} \backslash\{0\}$ and $\mathcal{L}^{-1} \bmod \phi$.
Ensure: $C^{\prime \prime}(\gamma) \equiv C^{\prime}(\gamma) \phi^{-1} \bmod p$, with $C^{\prime \prime} \in \mathbb{Z}[X]$ such that $\operatorname{deg}\left(C^{\prime \prime}\right)<n$
1: $q \leftarrow C^{\prime}\left(\mathcal{L}^{-1}\right) \bmod \phi$
2: $C^{\prime \prime} \leftarrow\left(C^{\prime}-q \mathcal{L}\right) / \phi$
3: return $C^{\prime \prime}$

As this new method works directly with a basis matrix, no further generation is needed and the step in $O\left(2^{n}\right)$ is completely bypassed. To represent all the elements of $\mathbb{Z} / p \mathbb{Z}$ we have the following restriction on \mathcal{L}

$\|\mathcal{L}\|_{1} \geqslant p^{1 / n}$

Furthermore we have the following bound on \mathcal{L} to guarantee the coefficient reduction

$\frac{\phi}{4(|\lambda|(n-1)+1)} \geqslant\|\mathcal{L}\|_{1}$

$4(2(129-1)+1)$
dramatically affects performance
It is easy to see n is too small and we will in practice need $n=188$ for this integer size which dramatically affects performance

Even though current PUs operate on 64-bit logic, compilers like GCC offer the possibility of using 128-bit variables. As such a possible solution to reduce n is to use $\phi=2^{128}$. This leads to the following results.

References

[1] J.-C. Bajard, Laurent Imbert, and Thomas Plantard. Modular number systems: Beyond the mersenne family. In Selected Areas in Cryptography, 11th International Workshop, SAC 2004, Waterloo, Canada, pages 159-169, 2004 [2] Fangan Yssouf Dosso, Jean-Marc Robert, and Pascal Veron. PMNS for Efficient Arithmetic and Small Memory Cost. IEEE Transactions on Emerging Topics in Computing, 10(3):1263-1277, July 2022.
 pages 463-477, 2008

